江西财经大学兰州大学浙江理工大学

当前位置:考研资源网 > 考研备考  > 考研数学

2021考研数学冲刺:易混淆知识点总结

时间:2020-11-25     作者:考研资源网  所属栏目: 考研数学

一、几个易混概念:连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。

二、罗尔定理:设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点&xi&isin(a、b),使得f‘(&xi)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点&xi,使f’(&xi)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。

三、.泰勒公式展开的应用专题:相信很多同学看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在我搞明白一下几点后,原来的症状就没有了。1.什么情况下要进行泰勒展开2.以哪一点为中心进行展开3.把谁展开4.展开到几阶?

四、应用多次中值定理的专题:大部分的考研题,一般要考察你应用多次中值定理,重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,我的敏感性是靠自己多练习综合题培养出来的。我会经常会去复习,那样我对中值定理的题目早已没有那种刚学高数时的害怕之极。要想对微分中值定理这块的题目有条理的掌握,看我这个总结定会事半功倍的。

五、对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:这几乎每年重要,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。

在线报名
上传

上传格式要求:doc、docx、rar、zip、xls、xlsx(5MB)

确认报名
地区分站北京 河北 天津 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆